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•s-Ensemble 

x

t = 0 tt = tobs

ππππ
{ππππ}  : Space of trajectories in thermal equilibrium from 0 ≤ t ≤tobs

P[ππππ] : Probability of the trajectory ππππ in this space

Time extensive variables depending on π π π π :

K : activitiy, number of changes of configuration in ππππ
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In this dynamical ensamble s adjusts 
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In this dynamical ensamble s adjusts 

<K>Field s: biasing P similar to the 

Boltzman factor we define the s-

ensamble

Dynamical Partition Function :  

Dynamical Free Energy :

First order Transitions s=0 KCM J. P. Garrahan, et al Phys. Rev. Lett. 98, 195702 (2007).
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•1D-Ising Model with s-Ensemble 

The model has a trivial singularity at T=0, s=0. The master equation using Glauber dynamics can 

be written with field s. The dymamical free energy is given by the largest eigenvalue of the 

evolution operator W (Jack and Sollich, Prog. Theor. Phys. Supp.184, 304 (2010)):
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is continuous  

diverges to a line of dynamical critical points given by: 
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R. Jack and P. Sollich, Prog. Theor. Phys. Supp.184, 304 (2010). 



• Monte Carlo Simulations 

Trajectories: Standard  Glauber dynamics at Temperature T=1.5

s-Ensamble:  Transition Path Sampling with different s

s < sc

s ~ sc s > sc



• Observables

Usually the activity is the order parameter but NOT here
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But, we can use the integrated magnetization

T=cte=1

s=cte=0.0366..



We need use the finite size scaling. ψ(s) is similar to the free energy of the Ising 2D f(T). So 

we expect the following finite size scaling for the activity k using now tobs as the system size L 

•Finite Size Scaling I (k↔s)
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If the s field is a temperature like variable we can use the same scaling for T and U: 

•Finite Size Scaling II (U↔T)
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The same is valid for (U↔s) (k↔T)



• Magnetic Susceptibility
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This exponent is very sensitive to N. The present sizes are 

too small to estimate it with a reasonable precision.



• Magnetic Field (First Order)

We can explore the phase diagram 

by using a magnetic field h (plane 

h,s )at constant Temperature 

Histeresis loops are generated by 

driven the magnetic field around 

the line of the first order trransition. 

Its area increases (as expected) 

with s and with the size of the 

system (tobs) 

• Hysteresis



• Phase Diagram



• s and T are symetric variables with same finite size scaling law

• To determine more precisely the exponents we need use other technique 

(for example short time dynamics) 

• With magnetic field we show that a plane of first order transition appears 

(it has not derived from the theoretical solution)

•Conclusions

(it has not derived from the theoretical solution)


