APPLICATION IN POINT PATTERN ANALYSIS

Rizwanur Rahman
First year PhD Mathematics Student
University of Bristol

Presentation Outline

- Statistics and Point Patterns
 - Point Patterns
 - Important Applications of Point Pattern Analyses
 - Some Statistical Methods in Point Pattern Analyses
 - Exploratory
 - Testing for randomness

Point pattern:

- •Event collection over region arising from generating process
- Interest in whether events clustered or not (many others)
- •Types:
 - Spatial at point locations, e.g. Larynx cancer cases (red) over district with incinerator
 - Bivariate two types, e.g. Amacrine cells in rabbit's retina
 - Spatio-temporal depends on time and space, e.g. Lung (blue) and Larynx (red) cancer cases

- Applications include:
 - •Environmental epidemiology, e.g. are diseases such as Burkitt's Lymphoma infectious
 - spread with time?
 - •Seismology e.g. predict spatio-temporal aftershock occurrence following earthquake based on results obtained for earthquake occurred

•Quadrat counts:

- Summarize distribution of point pattern event locations
- •Fine grid of equally spaced squares placed over point pattern
- •# events in each grid square recorded
- Density plot representing each grid square's event

density obtained

- •Kernel estimation:
 - •Obtain smooth estimate of uni- or multi-variate probability density from sample (smooth histogram in univariate case)

•Typical expression for intensity estimate of events in point pattern is: $\hat{\lambda}_{\tau}(s) = \sum_{i=1}^{s} \frac{1}{\tau^2} k \left(\frac{(s-s_i)}{\tau} \right)$, kernel k() is suitably chosen

bivariate (2-d) probability density function, bandwidth \mathcal{T} represents smoothing degree, \mathbf{s} is general point location and \mathbf{s}_i is ith event's point location

•Index of Dispersion:

- •Test statistic s^2/\bar{x} , \bar{x} is mean number of events in each square of grid placed over point pattern and s^2 is its observed variance
- For randomly distributed events, $\frac{s^2}{x}$ should be close to 1
- For clustered patterns, s^2/\bar{x} should be less than 1
- For a regular pattern, s^2/\bar{x} should be greater than 1
- Expect consistent results for point patterns comprising sufficiently many events

Statistics and Point Patterns Nearest Neighbour distances:

- - cumulative distribution function for their nearest neighbour event distances given by $G(w) = 1 - e^{-\lambda x w^2}$,
 - neighbour distances
 - Regular patterns have more large than small nearest neighbour distances
 - Assess significance of deviation from randomness by:
 - •Upper and lower simulation envelopes $Y(w) = \max_{i=1,...,m} \{ \hat{G}_i(w) \} \Lambda(w) = \min_{i=1,...,m} \{ \hat{G}_i(w) \}$

$$Y(w) = \max_{i=1,\dots,m} \{ \hat{G}_i(w) \}$$

$$\Lambda(w) = \min_{i=1,\dots,m} \{ \hat{G}_i(w) \}$$

 $G_i(w)$

•Plot estimate of empirical cumulative distribution for G(w), $\hat{G}(w) =$

$$\hat{G}(w) = \frac{\#(w_i \leq w)}{n}$$

$$\bar{G}(w) = \sum_{i=1}^{n} \hat{G}_i(w)/m$$
 (green) and superimpose

- The Clark-Evans test:
 - •The mean nearest neighbour distance for random point pattern containing *m* events arises from

$$N\left(\frac{1}{2\sqrt{\lambda}},\frac{(4-\pi)}{4\lambda\pi n}\right)$$

- •Expect clustered patterns to have observed mean nearest neighbour distance values significantly smaller than theoretical mean nearest neighbour event distances
- •Expect regular patterns to have observed mean nearest neighbour distance values significantly larger than theoretical mean nearest neighbour event distances

• *K* function:

- λK(d) = E(#(events within distance d of arbitrary event))
- λ = intensity or mean number of events per unit area
- Suitable *K* function estimate:

$$\frac{1}{\lambda^2 R} \sum_{i \neq j} \sum I_d(d_{ij})$$

R is point pattern's area and $I_d(d_{ij})$ is indicator function for i-th event within distance d of j-th event

- Expected number of events occurring within arbitrary distance d of given event from random point pattern is $\lambda \pi d^2$
- For clustered pattern, K(d) greater than πd²
- For regular pattern, K(d) less than πd^2

Summary and Conclusions

- Looked at:
 - Point Patterns:
 - Definition
 - Types
 - Applications
 - Statistical methods
- Further potential work:
 - Modelling point patterns
 - Edge effects and correcting for them
- References:
 - 'Drivers of bacterial colonization patterns in stream biofilms', 2010, Auspurger C.
 - 'Assessing spatiotemporal predator-prey patterns in heterogeneous habitats', 2010, Birkhofer, K.

THE END

