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Motivation

Working with bioinformatics colleagues, it was observed that
there is the need for precise approaches to quantify topological
properties of large networks.

Aim is to develop rigorous and precise tools which can be
applied to studying real biological networks.
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Abstracting a network

A network will be represented as a matrix c.

cij = 0 or 1 .

Undirected network := symmetric matrix.

Directed network := unsymmetric matrix.
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Degrees or degree pairs - ki or ~ki = (kin
i , k

out
i )) - are for

each node i drawn independently from a specified (joint)
degree distribution p(k) (or p(~k)).

The average connectivity of the network =: k̄.

The degree-degree correlation is expressed via
W (k, k′) = (Nk̄)−1

∑
ij cijδk,kiδk′,kj or an analogous

expression for the directed case.

πk̄(k) = e−k̄k̄k/k! (Poisson)

W (k) is the marginal of W (k, k′)
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Defining the problem

The aim is to calculate the Shannon Entropy
S = −N−1

∑
c p(c) log p(c) of random graph ensemble defined

via tailored topological constraints.

Additionally, these methods are applied in order to calculate a
Kullback-Leibler distance between two ensembles A and B.
DAB = 1

2N

∑
c

{
p(c|pA,QA) log

[
p(c|pA,QA)
p(c|pB ,QB)

]
+p(c|pB, QB) log

[
p(c|pB ,QB)
p(c|pA,QA)

]}
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Results from Annibale et. al.

Complexities of constrained random undirected graph
ensembles.

S0[k̄] = 1
2 k̄
[

log(N/k̄) + 1
]

Cdeg[p] =
∑

k p(k) log
[
p(k)
πk̄(k)

]

Cwir[p,W ] = 1
2 k̄
∑

k,k′ W (k, k′) log
[

W (k,k′)
W (k)W (k′)

]
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Results from Annibale et. al.

Kullback-Leibler distances between constrained ensembles of
undirected random graphs.

Ddeg
AB

1
2

∑
k pA(k) log

[
pA(k)
pB(k)

]
+ 1

2

∑
k pB(k) log

[
pB(k)
pA(k)

]
+

+

Dwir
AB

1
4 k̄A

∑
k,k′ WA(k, k′) log

[
ΠA(k,k′)
ΠB(k,k′)

]
+1

4 k̄B
∑

k,k′ WB(k, k′) log
[

ΠB(k,k′)
ΠA(k,k′)

]
+

+
Dint
AB

1
2 k̄A

∑
kWA(k) log ρAB(k) + 1

2 k̄B
∑

kWB(k) log ρBA(k)
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p(c|~k1. . .~kN ) =

∏
i δ~ki,~ki(c)

Z(~k1. . .~kN )
, Z(~k1. . .~kN ) =

∑
c

∏
i

δ~ki,~ki(c)

Manipulate the expression for Shannon entropy to show that
the key term involves the logarithm of the associated partition
function
This expression is more tractable when we transform
Z(~k1 . . .~kN ) into an average involving an alternative measure.

w(c|k̄) =
∏
ij

[ k̄
N
δcij ,1+

(
1− k̄

N

)
δcij ,0

]

S =
1

N

∑
~k1...~kN

[∏
i

p(~ki)
]

log〈
∏
i

δ~ki,~ki(c)
〉̄k −

∑
~k

p(~k) log p(~k)

+〈k〉
[

log(N/〈k〉) + 1
]

+ εN
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Using Fourier representations of the Kronecker deltas and some
straightforward manipulations brings us to

φ =
1

N

∑
~k1...~kN

[∏
i

p(~ki)
]

log

∫ π

−π

∏
i

[dωidψi
4π2

ei[ωik
in
i +ψik

out
i ]
]
L(ω,ψ)

L(ω,ψ) = exp
[
k̄N
( 1

N

∑
i

e−iωi

)( 1

N

∑
j

e−iψj

)
− k̄N +O(N0)

]
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A path integral form is achieved by manipulating δ functions in
order to isolate the site specific terms.

φ((kin,kout)) =
1

N

∑
(kin,kout)

p(kin,kout) log

∫
{dP (ω)dP̂ (ω)}{dQ(ψ)dQ̂(ψ)}eNΨ

Ψ[P, P̂ ,Q, Q̂] =
∑
kin

p(kin)log

∫ π

−π

dω

2π
ei[ωkin−P̂ (ω)]

+
∑
kout

p(kout)log

∫ π

−π

dψ

2π
ei[ψkout−Q̂(ψ)]

+i

∫ π

−π
dωP̂ (ω)P (ω) + i

∫ π

−π
dψQ̂(ψ)Q(ψ)

+

∫ π

−π
dωdψP (ω)Q(ψ)k̄(e−i(ω+ψ))− k̄ +O(N−1)
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Final form of the directed result: complexity

S0[k̄] = k̄
[

log(N/k̄) + 1
]

Cdeg[p] =
∑

~k
p(~k) log

[
p(~k)

πk̄(kin)πk̄(kout)

]

Cwir[p,W ] = k̄
∑

~k,~k′ W (~k,~k′) log
[

W (~k,~k′)

W1(~k)W2(~k′)

]
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Final form of the directed result: distance

Ddeg
AB

1
2

∑
~k
pA(~k) log

[
pA(~k)

pB(~k)

]
+ 1

2

∑
~k
pB(~k) log

[
pB(~k)

pA(~k)

]
+ +

Dwir
AB

1
2 k̄A

∑
~k,~k′ WA(~k,~k′) log

[
ΠA(~k,~k′)

ΠB(~k,~k′)

]
+ + 1

2 k̄B
∑

~k,~k′ WB(~k,~k′) log
[

ΠB(~k,~k′)

ΠA(~k,~k′)

]
+

Dint
AB

1
2 k̄A

∑
~k,~k′ WA(~k,~k′) log[ρAB(~k)σAB(~k′)]

+1
2 k̄B

∑
~k,~k′ WB(~k,~k′) log[ρBA(~k)σBA(~k′)]
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Self consistency relation to be satisfied by the
interference term

ρAB(~k) =
∑
~k′

ΠB(~k,~k′)W2A(~k′)σ−1
AB(~k′)

σAB(~k) =
∑
~k′

ΠB(~k′,~k)W1A(~k′)ρ−1
AB(~k′)
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Defining gene regulation networks in term of their
observed topological features
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Defining gene regulation networks in term of their
observed topological features

Break down of what each bar on the graphic represents
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Defining gene regulation networks in term of their
observed topological features
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Summary

What has been achieved is:

Exact and explicit formulae for the leading orders in the
system size of

Shannon entropies and complexities of these ensembles
Information-theoretic distances

for random graph ensembles constrained by a prescribed
degree distribution and a prescribed degree degree
correlation.

Software implementation and initial applications to gene
regulation data, in order to present the result as a
bioinformatics tool, promoting cross-disciplinary research
and dialogue.
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Next steps

Extending the range of properties that can be analysed

Generalised degrees
Loops

Finding interesting ways in which to apply the tools
developed to real biological problems
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